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Ahstract--A new approximate analytic solution technique is developed for treating the heat exchange 
between two or more axially interacting vessels which are eccentrically embedded in a cylinder. The cylinder 
exchanges heat by convection with the environment and has a non-uniform surface temperature due to the 
vessel eccentricity. The flow in the vessels can be either countercurrent or unidirectional. The solution is 
constructed by superposition of a new solution for a single embedded vessel which exactly satisfies the 
boundary conditions when the thermal conductivity of the fluid is equal to that of the cylinder material 
and is a very good approximation when these conductivities are not equal. Comparison with an exact 
solution for a single embedded vessel, when the conductivities are not equal, shows that the approximate 
solution results in very minor errors for a wide range of the governing parameters. As an application of 
the new technique the two-vessel solution is used to examine the countercurrent heat exchange in a human 

arm. 

1. I N T R O D U C T I O N  

THiS STUDY was mot iva ted  by the need to describe 
the heat  exchange between the thermally significant 
counte rcur ren t  arteries and veins which occur 
t h roughou t  the macro-  and microvascula ture  of  
humans  and animals.  This  three-way energy exchange 
occurs, for example, in the ma jo r  axial arteries and 
veins that  supply and drain  the h u m a n  limbs, fingers, 
and the rat ' s  tail. A basic heat  t ransfer  model for such 
systems is a coun te rcur ren t  a r te ry-ve in  pair which 
is eccentrically embedded  in a cylinder with surface 
convect ion  to the env i ronmen t  (Fig. 1). The eccen- 
tricity is arbi t rary  since the a r te ry-ve in  pair  may be 
close to the center  of  the tissue cylinder or the surface. 

A l though  the mot iva t ion  and focus in this s tudy is 
the model ing of  the biological  systems described 
above,  the analysis is equally applicable to heat  trans- 
fer in engineering systems such as buried pipes and 
solar  collectors. 

Previous studies [1-7] have analyzed heat  t ransfer  
problems for one or two vessels embedded  in infinite, 
semi-infinite or finite cylindrical media.  Var ious  
bounda ry  condi t ions  on the vessels and cylinder sur- 
faces were examined.  Cha to  [1] considered two 
unequal  vessels at  uni form surface tempera tures  
embedded  in an infinite medium.  Wlssler [2] treated 
the same conf igura t ion with cont inui ty  of  heat  flux 
and  non-un i fo rm vessel wall t empera ture  and  was able 
to ob ta in  an exact solut ion for the case of  a l inear 

thermal  gradient  with equal vessel and medium con- 
ductivities. 

The  problem of  a single vessel in a semi-infinite 
medium was examined by Cha to  [1] and Bau and 
Sadhal  [3]. The free surface exchanges heat  by con- 
vection with the env i ronmen t  in ref. [1] and is iso- 
thermal  in ref. [3]. 

Defelice and Bau [4] analyzed a single vessel which 
is eccentrically embedded  in a cylinder using a con- 
formal  mapp ing  method.  The bounda ry  condi t ions  
on the vessel and cylinder surfaces were of the third 
kind, i.e_ convective. 

Recent  interest in model ing counte rcur ren t  vessels 
in perfused tissue and limbs has mot iva ted  studies on 
two vessels embedded in a cylinder. Baish et al. [5] 
considered two equal  vessels symmetrical ly placed in 
a cylinder. Vessel bounda ry  condi t ions  were of  the 

FIG. 1. Schematic of countercurrent vessels embedded in 
a cylinder. 

1073 



1074 Y.L. Wu et al. 

N O M E N C L A T U R E  

a vessel radius (a, v) 
a,, coefficients for single vessel non- 

conformal mapping solution, defined 
by equation (13) 

A,,, B,,, C,, numerical coefficients for 
bicylindrical solution in equations (31) 
and (32) 

b,,, c,, coefficients for countercurrent 
solutions, defined by equation (45) 

Bi Blot number, hR/k ,  
c specific heat 
h heat transfer coefficient 
k thermal conductivity 
/~ ratio of fluid to embedding medium 

thermal conductivities 
Nu Nusselt number of vessel, hR/kr  
Pe Peclet number of vessel, 2prcfa, V, /k f  
q heat flow rate per unit length of the vessel 
r radial coordinate, Fig. 2 
R radius of embedding cylinder, Fig. 2 
s distance from origin to vessel axis, Fig. 2 
sp axis-to-axis distance between vessels, 

Fig. 2 
T temperature 
To artery bulk temperature at z = 0 
T~ ambient temperature 
x, y Cartesian coordinates, Fig. 3 
V mean fluid flow velocity 
I? ratio of V,, to V. 
z dimensionless axial coordinate 
Z axial coordinate_ 

Greek symbols 
a,/3 bicylindrical coordinates, Fig_ 3 
0 dimensionless temperature 

0,m dimensionless tissue mean temperature 
),, eigenvalue defined by equation (54) 
q, ~ defined by equations (55) and (56) 
p dimensionless radial coordinate 
pf density of fluid in vessels 
PR dimensionless radius of embedding 

cylinder 
a~ shape factor for single vessel case, defined 

by equation (19) 
a,, shape factor between vessels, defined by 

equation (57) 
om shape factor between vessel pair and 

environment, defined by equation (58) 
~b polar angle in cylindrical coordinate 

shown in Fig_ 2 
Z, constant defined by equations (52) and 

(53) 
o~ij component of eigenvector, defined by 

equations (52) and (53). 

Superscript 
- dimensionless_ 

Subscripts 
vessel for single vessel case 

a artery for countercurrent flow case 
b bulk 
f fluid in vessels 
h homogeneous temperature 
m matrix value for vessels and embedding 

cylinder 
p particular temperature 
t tissue 
v vein 
w wall_ 

third kind, while the cylinder surface was at a uniform 
temperature. A similar problem was solved by Zhu et 
al. [6] using unequal vessels at uniform but unequal 
surface temperatures_ 

Since the major axial countercurrent artery-vein 
pairs in human limbs are eccentrically located, Zhu et 
al. [7] investigated the effect of eccentricity of two 
unequal vessels which are asymmetrically embedded 
near the center of a cylinder_ They imposed a con- 
vective condition on the cylinder surface and satisfied 
continuity of temperature and heat flux at the vessels' 
surfaces. A perturbation solution was obtained which 
is limited to small eccentricity of the artery-vein pair. 
This is a serious limitation in the biological appli- 
cations mentioned earlier since the eccentricity can 
be significant, with the major axial countercurrent 
artery-vein pairs running much closer to the surface 
than the center of the limb, finger or tail. 

This paper removes this limitation by constructing 

a new approximate solution for a single vessel with 
arbitrary eccentricity. This solution is then applied to 
two unequal countercurrent vessels arbitrarily embed- 
ded in a cylinder which is subjected to the general 
boundary conditions treated in Zhu et al. [7]_ The 
solution is approximate because it exactly satisfies the 
continuity of the heat flux condition at the vessel 
surface only when the ratio of fluid to the embedding 
material conductivity,/~, is unity. 

A solution to the multiple embedded vessel problem 
may be obtained by the superposition of the single 
vessel solutions provided the basic solutions for each 
vessel satisfy the continuity of temperature and flux 
at the surfaces of the other vessels and their super- 
position satisfies the surface boundary condition on 
the embedding cylinder. Although conformal map- 
ping can be used to treat the single vessel case, as in 
ref. [4], the form of the solution precludes super- 
position. The difficulty is traced to the nature of the 
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boundary conditions considered, since solutions to 
two or more individual vessels in a cylinder cannot be 
transformed to common bicylindrica[ coordinates. An 
alternative approach is developed here in which a new 
non-conformal mapping solution for an individual 
vessel is constructed in which superposition methods 
can be applied. 

The effect of  not exactly satisfying the continuity of  
the heat flux condition at the vessel's surface when 
/7 4:1 is investigated by first obtaining a new exact 
solution for a single vessel in a cylinder with surface 
convection, which is valid for any value of  E, and 
comparing the predictions of  this new exact solution 
with the approximate solution. The results show that 
the discrepancy is remarkably small over a wide 
range of  the three governing parameters : the cylinder 
Blot number, the eccentricity and the cylinder-vessel 
diameter ratio. 

2 .  F O R M U L A T I O N  

Consider two or more flow vessels embedded in a 
cylinder with surface convection. The geometry of  the 
cross-sectional plane and the coordinate system used 
in the analysis are illustrated in Fig. 2, in which two 
countercurrent  vessels are shown. We assume that the 
flow in the vessels is laminar with a parabolic velocity 
profile with mean velocities V, and Vv. The Peclet 
number is assumed to be very large and the cylinder 
is long. Thus axial conduction and end effects can be 
neglected. 

The non-dimensional parameters and variables 
which are appropriate for both the single embedded 
vessel case and the countercurrent  flow case illustrated 
in Fig. 2 are defined as follows : 

a,. _ s p  s~ 
~ v = - - ,  sp = , ga = - -  

t] a t2 a aa 

S v 1" R r a 
.~, = - - .  p = - -  p a  = - - ,  p ,  - -  

aa aa ' aa aa 

r,, hR  2prcra, 11".., 
p , , = - - ,  B i =  , pc 

a,, ~ k r 

loo. I1 

FIG. 2. T h e  g e o m e t r y  o f  the c r o s s - s e c t i o n a l  p l a n e  a n d  co- 

ordinate system. 

F~=kr  V, Z O =  T - T ~  
I,," V-v." a.po' ro-rT 

The subscripts a and v have been used here to denote 
an artery-vein pair that will be used as a simple model 
for the arm later in the paper. The technique, however, 
can be applied to any number of  parallel vessels with 
flow in either direction. Based on the above assump- 
tions and definitions the dimensionless energy equa- 
tions for the artery and vein are : 

( 80~,'] I ,'20:, 80. 1_~_ p + ( I - p ~ ) . :  
p S p \  ~ p /  p2 ~c~ 2 -  o: 

for p, < 1 (1) 

1 8 (  l :0, , 8 o  
t y  V )  + 8,l, - - 

for p, < 1. (2) 

The minus sign in (2) is used to describe counter- 
current f low for the biological appl icat ion. The 
heat conduction equation in the surrounding tissue 
cylinder is 

I ,? [pSO,~  I ' 1 820, 
- -  +p_, - 0  

for p,, >~ 1, p, >t 1. (3) 

The corresponding boundary conditions are 

0 . . . . . .  O, for p . . . . .  1 (4) 

_80..,. 20, 
k 8p:,.,. - ?p,.,. for p~,., = 1 (5) 

80~ Bi 
- 0. f o r p  = PR- (6) 

Op OR 

In order to separate the variables in equations (1) and 
(2), we assume that the convection terms 80~,.,./8z can 
be approximated by the axial gradient of  the bulk 
temperatures in the vessels, dO,h.vb/dz. Conservation 
of  the axial energy flux in the vessels leads to the 
following expression for the vessel: 

2 I2" fo' 0,b.,.b = -- 0,,.,.(I --P~.v)P~.,. dp,.,, d~b ..... (7) 
~3o 

Introducing this approximation into equations (1)- 
(3), we obtain 

, dO.b  
V"0, = (1--p~-) ~z  forp~. < 1 (8) 

d0v, 
V-'0v = --I?(I--p,~) ~ - _  forpv < 1 (9) 

V-'O, = 0 forp ,  /> 1, Pv >/ I (10) 

where the Laplacian operator  is used to describe the 
conduction terms. 
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3. S I N G L E  V E S S E L  S O L U T I O N  

In this section, two solutions for the single vessel 
case are presented : a non-conforrnal mapping analytic 
solution which is exact only when k-= I and a bi- 
cylindrical solution based on conformal mapping 
which is valid for all values of k-. The former will be 
used in a superposition scheme to construct the solu- 
tion for two or more vessels while the latter will be 
used to examine the accuracy of the approximate 
solution when/,7 :/: 1. The geometry of the cross-sec- 
tional plane and the bicylindrical coordinates for the 
single vessel analysis are illustrated in Fig. 3. 

3.1. Non-coll/brmal mapphtg solution 
The governing equations for the vessel and embed- 

ded material (tissue) are given in (8) and (101 respec- 
tively. The corresponding boundary conditions are 
equations (4)-(6)_ The temperature solution can be 
decomposed into two parts 0 = Oh+Ov, where 0h is 
the homogeneous solution and 0p is the particular 
solution. The particular solutions for the vessel and 
tissue are : 

• i6 p" - 161  d -"  
p~ < 1 (11) 

dOab 
Op, = ~,xC(ln p~,) dz P:' >~ 1 (12) 

and the homogeneous solution for the tissue, 0,, takes 
the form 

(i3) 
( * 

11h, = a o+ ~ a,,p"cosnep 
n =  I 

Before adding the particular solution for the tissue 
(121 to the homogeneous solution (13), they must 
first be expressed in terms of common coordinates. 
Transforming the coordinates p=, 4& in the particular 
solution to p, 4) and combining the resulting equation 
with the tissue homogeneous solution (13), we obtain 

X 

/_ \ 
I p . °  ,_ 

\ i \ y¢'..B-,,= 
/ t :& 

FIG. 3. Radial coordinate and bicylindrical coordinate 
system for a single vessel. 

O, = ao+,,~,a,,p" cosndp) dz" 

dO.,~ 
+ ~ E l n ( p - ' + £ ~ - 2 p L  cos~b) ~ .  (14) 

The coefficients ao and a,, in (14) are determined from 
boundary condition (6) ; however, their evaluation is 
not straightforward. Equation (14) is substituted in 
(6) and integral expressions ['or a,, are then obtained 
from orthogonality. These integrals can be converted 
into contour integrals in the complex plane and then 
evaluated using residue theory. This elegant analysis, 
which is described in the Appendix, leads to the 
expressions 

a , , =  - ~  ~ / + l n p n  (15) 

a,, = ,~(n-+ Bi)o' ~ -- -- I I \ P R /  " (16) 

A homogeneous solution to the vessel equation (8) is 
also required to satisfy boundary condition (5). A 
series solution of the form (13) cannot be used for 
h r ¢ 1 since there is a singularity in the vessel region 
p,, -%< 1. Although an alternative infinite series solution 
can be constructed, the determination of the 
coefficients in this infinite series would require a cum- 
bersome numerical evaluation. However, one notes 
that if F = 1 the solution (13) will satisfy boundary 
conditions (4) and (5) and the vessel equation (8) 
exactly. When (:/= 1, the homogeneous solution (13) 
satisfies boundary condition (4), but not (5) and the 
solution (141 is only approximate, but, nevertheless, 
as we shall show shortly, highly accurate for most 
conditions of interest This approximate analytic solu- 
tion to the single vessel-tissue problem given by (14), 
(15) and (16) can be superposed to construct the solu- 
tion to two or more vessels embedded at any location 
in a cylinder The error due to this approximation for 
/,- :# I is examined in detail in Section 5. Our approxi- 
mate solution to the vessel temperature is thus 
obtained by adding (111 and (13) 

~ "~ dO.,h 
0,, = ao+,,~_, a,,p" cos nq~) 

(1, 14 3]dO,,  
+ ~ p ; -  -- (17) ~ P ~  16) d z '  

Equations 04 )  and (I 7) reduce to the exact solutions 
for the limiting case s, = 0. 

To complete the analysis, the bulk temperature 0,,h, 
shape factor a, and Nusselt number  Nu= are needed. 
Substituting (17) into (7) and evaluating the double 
integrals, we obtain an expression relating 0,.h and its 
gradient : 

11 "~ _ ~dO.b 
O,b= - ~ + a o +  E a,,s: II ~ . (18) 

it= I 
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The shape factor, o-,. for heat transfer between the 
vessel and tissue cylinder is defined as : 

d0,,b 

q,, k d2 
a~, = 2xk,(T~,h- T . )  = - 4 0~b (19) 

where q,, is the heat transfer per unit length of vessel 
which is equal to -prc,-na~ ~',,(dT~,b/dZ). Equations 
(18) and (19) yield 

The Nusselt number  for the vessel is defined as 

d0~,h 

q,, I dz 
Nu,, - T[.kl/(Tab_ Taw ) - 2 0:,h--0 ..... (21) 

where 0~,. is the dimensionless mean wall temperature 
of the vessel which is defined as 

0.,~ = 2n J0 0.,(1 q~,) d4~;, at p;, = 1. (22) 

Substituting (17) into (22) and introducing the result- 
ing expression for 0,~. into (21) we obtain 

Nu:, = 48/11. (23) 

This result for the vessel Nusselt number  is identical 
to that for a fully developed temperature distribution 
in a tube with constant  surface heat flux. Examination 
of the vessel solution shows that the homogeneous 
part plays no role in the determination of the Nusselt 
number. 

3.2. ConJbrmal bicircular mappblg solution./br a single 
vessel lor k. ,t ~ 1 

The single vessel solution presented above does not 
satisfy boundary  condit ion (5) exactly when ,~ 4= 1. 
To examine the accuracy of this approximate solution 
an exact solution, valid for all values of~, is developed 
in this section. 

We introduce the bicylindrical transformation 

. , x - o ' =  - s i n h  a, tann k ~  j 

0 < ~ < o o , - x < / 3 < x  (24) 

where the coordinates ~,/3 are shown in Fig 3. Con- 
stant a-coordinates are circles described by 

sinh'- ~'l 
( x + s i n h  a I coth cx)'-+y-' = sinh-' ~ (25) 

with a~ representing the vessel and % the cylinder. 
Geometric relationships require that 

a, sinh a= 
(26) 

R - s i n h  u ,  

and 

g, = sinh a,(coth a . - c o t h  :~,). (27) 

The governing equations for the vessel and tissue in 
the new coordinates are the same as (8) and (10) with 
the Laplacian terms expressed in terms of a and/3. 

The boundary conditions transform to 

c30, 
(coshcc=+cos/3)~- = sinha=BiOt fora = c~_~ (28) 

c a  

0,,(:~,/3) = 0,(a./3) for a = a, (29) 

and 

E 8t)., 80, 
" ~ - & fora  = a,. (30) 

The solution to the vessel equauon (8) is 

, = c,, e "" cos ni l )  0., coW,, t 

(1 ,  i 3 d0 ,h 
+ ~Pg-- ~Pl-- 16,/ dz (31) 

and the solution to the tissue equation (10) is 

0 t = [  _~ ( A , , s i n h n c ~ , ,  , 

7dO,. 
+ 8 , ,  c o s h  n=)  c o s  n p + A o - J  d'__ '° . ( 3 2 )  

The coefficients A,,. B,,. C,, are evaluated using 
boundary conditions (28)-(30). Boundary condition 
(28) yields a set of linear algebraic equations:  

Ao(cosh a_, -a_, Bi sinh % ) +  ~(A I cosh a, 

+BI s i n h = : ) - - B o B i s i n h a ,  = 0  (33) 

A0 + A  i(cosh'- a_,-- Bi sinh-' a_,) +A= cosh 2a, 

+Bt (cosh  a_, sinh a_~ - B i  sinh a= cosh a_,) 

+B_~ sinh 2e= = 0 (34) 

and 

11-- I 
A,,_ ,(cosh a_,-  tanh na_, sinh a _ ~ ) - -  

2 

+ A,,(n cosh a_, -- Bi sinh a_, tanh n%) 

n + l  
+ A,,+ i (cosh a_, + tanh ha2 sinh "2) 

n - I  
+ B " - ' ( t a n h m t 2 c ° s h a 2 - s i n h a 2 )  2 

+ B,,(n cosh ~_, tanh no~,_- Bi sinh a2) 

n + l  
+B,,+ j(tanh na2 cosh a= +s inh  a 2 ) ~  = 0 

f o r n > / 2 .  (35) 

Boundary condit ion equation (29) requires that 
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c. = A0~i+Bo 

and 

c,, = e  (A, s i n h n : x ,+ B ,  coshn:~, 

(36) 

for n ~> 1. 

(37) 

Applying boundary condition equation (30). using 
orthogonality and evaluating the resulting integrals 
using residue theory, we obtain 

A. = - I f  (38)  

and 

( '  
1 I 

211 - I )" ~ ~ - k e''', (A,, cosh n:, i 

+B, ,s inhn:~,)  forn>~ I. (39) 

Equations (33) (39) contain 3 N + 3  unknowns.  
whereas the number  of equations is 3 N+2 .  This set 
of equations is, therefore, not closed. Fortunately.  
C,, exp ( - n ~ )  decreases as n is increased and thus 
it can be truncated at N terms. If we require that 
C x + ~ e x p ( - ( N + l ) : ~ ) = 0 .  then the above equa- 
tions can be truncated and solved in closed form. 
Computat ions for C, +  ~ exp ( - ( N +  l):~b) show that 
it dccreases very rapidly. The criterion used to choose 
N in the sequence is 

A',"+ 4 _ A;" B;,. + 4 _ B;V 

A;V+a + ~;<;~ + 
C;,.+ 4 _ C;" 

C;~+ 4 ~< 10 5 

f o r O ~ . / ~  10_ (40) 

Using (19) as the definition for the shape factor, one 
obtains from (31) 

(" L )' a , =  2 4 - 4  ( - 1 ) " C , e - ' - " ' ,  . (41) 

Result (41) is derived from a contour integration in 
the complex plane and residue theory. The Nusselt 
number  for the vessel is again a constant  equal to 
48/11. This is the same as the value obtained from the 
approximate solution. This is not surprising since the 
homogeneous solution does not contribute to the 
Nusseh number. 

4. TVVO-VESSEL SOLUTION:  
C O U N T E R C U R R E N T  HEAT EXCHANGE 

As an example of the superposition solution for 
multiple vessels, consider the problem of two embed- 
ded vessels with counterflow heat exchange. The solu- 
tion to this problem is obtained by superposition of 
two single vessel solutions presented in Section 3.1. 
The governing equations and boundary conditions 
are given by equations (4)-(6) and (8)-(10). The tem- 
perature solution is decomposed into two parts 
0 = O,+Op, where 0, and 0p are the homogeneous 
and particular solutions, respectively_ The particular 
solutions for the artery, vein and tissue are: 

Opt, = - P ~ -  16 p~ - d :  

(I '~dO,~ 
--IPd~ 4/,71np,) d ;  ' (42) 

( 1 _ ) d 0 . a ,  
On, 4k In p:, d :  

('4 <43, -v&-" p l -  i 6  p' - i d :  

Op, = k In P")" dz: - Ipd'-" 4 k In p, d :  

(44) 

The homogeneous solution in the three regions that 
replaces (13). (15) and (16) is 

,, = (,, + z 

~ ' dO, h 
+ c<,+,,~ c,,p" cos nq5 Pd~ dr (45) 

where 

and 

<46, 

\ / ~  \,, 

, , -  Jt , .J .  (47> 

:) PR 
c , , = 4  B) + l n u  ' (48) 

< (.,)(;:)., 
c , , -  4(n+Bi)p~' n - I  . (49) 

The temperature solutions in the artery and vein 
are used to determine the relationships for the bulk 
temperatures as defined by equation (7). The evalua- 
tion procedure of these double integrals is the same 
as that used in the single vessel case. Thus, the bulk 
temperature relationships for the interacting vessels 
that replace (18) for a single vessel are 

( "  ~ 9-6 1 l)dO~,h d -  
n = 0 

O"b = (, ,~o b''y" + ~ ln ~ } dz  

ll)_ 
+ <d", + ~ va t  . 

\ n ~ l l  

(51) 
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The coupled equat ions  (50) and  (51) can be solved 
analytically if a,., Y', g,, g,. and sp are cons tan t"  

O.h = Z , t , ~ , ,  cxp (-;-.z)+Z=~,J._, exp (2=z) (52) 

O,h = Z,~U:, exp ()..z)+Xyu=,_ exp ().~_z) (53) 

where eigcnvalues )...= are given by 

- ~ t +  x / (q ' - -¢ )  
)-L-' = (54) 

where 

,~ = P,7,-" t, , , .C[i- 9 6  Y' c,,gt! + 796 
o I \ n = f) 

-~_= ( ; :.,, /Sln sp'~ 
1 / ~l ,  ~ ) - ~ t',,~,+ 4: - 

\ iI = II 

x ,,-Z,, c,,s~i (55) 

and 

i / =  - .~ h,,~ . , -  + 195,.-' c,,s, + . 
\ \ ¢ l _ ( j  \ 1 1 ~  [i 

(56) 

e,J~, are the eigenvector  coefficients in equat ions  (50) 
and (51) and  Z. and  Z_, are integral  cons tants  which 
are de termined by the bulk tempera ture  at a reference 
posit ion.  For  three or more  vessels, relat ionships for 
0~,, i =  1, 2, 3 . . . . .  N, analogous  to (50) and (51) 
would be obta ined.  

5 .  R E S U L T S  A N D  D I S C U S S I O N  

5.1. Accuracy q f  the approxhnate solution: sinyh, 
embedded cessel 

Since bounda ry  condi t ion  (5) is satisfied exactly 
only when the thermal  conduct ivi ty  ratio ~-is equal  to 
unity, the solut ions (14) and (17) are approx imate  for 
all o ther  values of  k':. In this section we evaluate the 
error  associated with this approx ima t ion  by con- 
sidering the single embedded  vessel case for which an 
exact solut ion has been obta ined in Section 3.2 using 
conformal  mapping.  In particular,  the shape factor a,  
is examined by evaluat ing the ratio of  our  approxi-  
mate  solut ion for G ,  equa t ion  (20), with our  exact 
solut ion for o-,, equa t ion  (41). Compar i sons  are made  
for a wide range of  the four governing parameters  : 
the conduct ivi ty  rat io ~, Blot n u m b e r  Bi, eccentricity 
~, and the cylinder-vessel  radius rat io PR- The effect 
o fconduc t iv i ty  rat io and  Biot n u m b e r  on the accuracy 
of  the shape factor  for a conf igura t ion with large 
eccentricity defined by PR = 5 and g, = 3.5 is shown 
in Fig. 4_ Three  Biot numbers  are considered:  

I OI 

o ~.= O'i  * 1 . 0  
~ , o~ - . = , . - . _ . : _ . _ _ _  . . . .  

~ o ,  . . . . . . . . . . . . . . . . . .  
=~.o~ 
o £ 
~ _2. ~ 
~ . g o g e  

0 97 I I I I I I I I I 
I 2 3 4 5 6 7 B 9 I0  

R a t i o  o f  t h e r m o L  c o n d u c t i v i e . %  k" = k,  / k .  

FIG. 4. Effect of conductivity ratio E on the accuracy of the 
single vessel shape factor. Comparison between approximate 
and exact (conformal mapping) results for PR = 5 and 

,f, = 3 5 .  

B i = O . I ,  1.0, and 10. Values of  Bi typical of  the 
h u m a n  upper  l imbs are 1.5 in air and 10 in water. The 
conduct ivi ty  ratio is varied from 0 to 10. Since the 
approximate  solution is exact for ~ = 1, all curves 
intersect at a point  cor responding  to a shape factor 
ratio, (a,)~,f,~,,,,,. ....... / (G)  ....... of  unity. For  Biot num- 
bers of  0.1 and  1.0, the error  in the shape factor is 
insignificant and at Bi = 10 and /7 = l0 the error  is 
less than 3%. For  blood vessels in tissue 1 ~< E <  2 
and in engineering applicat ions ,C ranges from 
6 x  10 ~ (a i r -copper)  to 12 (wa te r -85% magnesia 
insulat ion).  Figure 4 also shows that  for ,I-~< I the 
error  in shape factor is less than 1%. This latter range 
of  £ includes fluids such as air, water  and oil flowing 
through cylinders of  materials  such as glass, wood, 
metal,  etc., which are c o m m o n  engineering appli- 
cations.  

The effect of  eccentricity and Biot n u m b e r  on the 
accuracy of  shape factor for /S= 10 and Pa = 5 is 
shown in Fig. 5. For  the limiting case of  concentr ic  
cylinders, i.e_ g, = 0, the exact result for the shape 
factor rat io of  unity is obtained for all Biot numbers  
regardless of  the value o fF ,  since equat ions  (14) and 
(17) reduce to the exact solutions.  As the eccentricity is 
increased the error  increases monotonical ly ,  reaching 
7% at Y, = 3_99 for Bi = 10 but  remaining small (less 
than 1%) for Bi = 0.1 and 1.0. It should be noted that  

I 0 1  

I 0 0  
m 

~ . ~  o ~  

~o97 

o . - A  ~¢o95 
O 9 4  

O 9 3  

Bi=  1.0 

I I 
2 3 

Eccentricity, .~o 
FIG. 5. Effect of eccentricity g,, on the accuracy of the single 
vessel shape factor. Comparison between approximate and 
exact (conformal mapping) results for PR = 5 and n c = 10. 
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O 9 4  

093 

Oi=l.O 

I0 
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5 6 7 8 9 I0 I I  
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FIG. 6. Effect of cylinder size Pa on the accuracy of the single 
vessel shape factor. Comparison bctween approximate and 
exact (conformal mapping) results for .~, = 3.5 and k-= 10. 

the maximum eccentricity for OR = 5 is 4.0, which 
corresponds to a vessel which is at a tangent to a 
cylinder. The effect of the cylinder-vessel diameter 
ratio PR on the shape factor ratio for /,7= 10 and 
£, = 3.5 is shown in Fig. 6. Here the error in the shape 
factor increases as the cylinder radius PR is decreased. 
Since g~ is constant, a decrease in Pa has the effect of 
increasing the eccentricity. The min imum value of 
PR representing the tangent configuration is obtained 
when PR = 4.5. On the other hand, at large Pa 
(pu t> 12), the limiting case of concentric cylinders is 
approached and an exact value for the shape factor is 
obtained for all values of Bi and/~. 

The results shown in Figs. 4-6 indicate that even 
though boundary condition (5) is not satisfied exactly 
when /? ~ 1, the error associated with this approxi- 
mation is minor, especially for Bi or k less than unity. 
In particular, in biological applications where the 
value o f ~  is approximately equal to unity, the error 
is indeed insignificant 

5 2. Two embedded vessels 

The two-vessel solution is used to examine the Nus- 
selt number,  the artery-vein and matrix shape factors, 
the axial vessel bulk temperature distribution, the 
axial mean cylinder temperature distribution, and the 
surface temperature distribution of the artery, vein 
and cylinder. 

Following the same procedure as for a single vessel, 
the Nusselt number  for both artery and vein is found 
to be 48/I I_ 

The two-vessel solution is used to obtain two heat 
transfer shape factors, a.v and a,,, which describe, 
respectively, the heat transfer rate between the two 
vessels, and that between the vessel-tissue matrix and 
the environment.  These factors are defined as 

% - q ~  
a,~ - (57) 

nk,(T~b -- T~.) 

and 

q, + q,, 
am - rtkm(Tm -- T ,  ) (58) 

where Tm is the mean matrix temperature (artery, vein 
and cylinder) given by 

~',,~ T-,- = 0., = ~ O(p,(a)p dp dO (59) Ttp~. 

and k., is the matrix conductivity given by 

1+6,-" ( 1 + 6 , " )  
k,, - ~ kr+  1 -  k,. (60) -/;U 

Substituting the solutions for the bulk temperature of 
the artery and vein, (50) and (51), into the definition 
of ,9-,.,,, we obtain 

d°'h +v<x - - .  

2 \ d z  d z J  

[ ,,~,b,,(,~':[-g[')-II _ #In ldo;., (61) 
~6 aspj 

+F,,~<.,.(,, l [ - 2 " °  ,','.)E (sp'~ I I 
4- n ~ , a , , ) -  96] pc~'d0'b-'- d-  

For the general case, a~,. depends on the local axial 
gradients of the vessel bulk temperatures. However, 
for the special case of two equal radii vessels embed- 
ded at equi-distance from the center of a cylinder, i.e. 
6, = 1 and ,~:,, = g,, (61) simplifies to 

2a r 
a,,, - (62) 

11 
~4 +Eln ip 

This result shows that the shape factor o-,,, for this 
special case depends only on the distance between the 
two vessels sp and is independent of eccentricity. It is 
interesting to note that if the radius of the embedding 
medium cylinder is infinite, then g, is equal to gv- 
Setting g,, = g,. and assuming equal flow rates in the 
two vessels, i.e_ IP6~ = 1, equation (61) reduces to 
Wissler's [2] results for two vessels embedded in an 
infinite medium. Result (62), without the In ~ term. 
was also obtained to leading order in the perturbation 
o f Z h u  et al. [7] for small eccentricity. Expression (62) 
is especially useful in biological applications involving 
extremities such as a finger or tail where the artery- 
vein pair is symmetrically located relative to the skin 
surface. 

Using the temperature solutions for the artery, vein 
and tissue to determine Tm from (59) and substituting 
the result into the definition of am, we obtain 

0"111 = 

/"dOab - .. dO~f~ Pl] 
4 / V6~ I 

\7~-: - ~-: ) (I + a ~ ) ~ + ( p ~ -  1 - ~ )  

- , , p . j  - + 

L Bi p. ~ ~,p.) j va: dz 
(63) 
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Since the vessel area is small compared  with the 
embedding  medium area, the term (l /pR) 2 in (63) is 
negligible. For  .~~, = g, and ,x c ~ 1 (63) simplifies to 

4 
a,,, - (64) 

Bi + 2 £. : 

The dependence of  the shape factor a~ on g~/PR for 
various Biot numbers  (0.1, 1.0, 10) is shown in Fig. 
7. For  Bi < I, the matr ix  shape factor is essentially 
cons tan t  independent  of  the vessels' location in the 
cylinder. However,  at Bi = 10, ~°, increases sharply 
as the vessels move closer to the cylinder surface. 
When the eccentricity is small, '~,/PR << 1, expression 
(64) reduces to the pe r tu rba t ion  solut ion o f Z h u  et al. 
[7], in which the (g,,/PR)'- term does not appear  

Finally, the two-vessel solut ion is applied to the 
h u m a n  arm to determine the a r te ry-ve in  and matr ix  
shape factors and the bulk and surface tempera ture  
d is t r ibut ion  of  the artery, vein and arm The con- 
figuration examined models  the arm as a cons tan t  
radius PR = 12. The artery and vein are assumed to 
be symmetrical ly embedded  in the tissue cylinder at 
g=, = g, = 8 with £fi = 3 and 6,. = 1. The conduct ivi ty  
ratio k- is equal  to unity and thus bounda ry  condi t ion  
(5) is satisfied exactly. Using (62) the ar te ry-vein  
shape factor  a~.~ is found to be 1.28. 

F rom (64), the cor responding  matr ix  shape factors 
am at Blot numbers  of  0.1, 1 and 10 for this model of  
the arm are 0.195, 1.565 and 5.294, respectively. 

To determine the axial var ia t ion of  bulk tem- 
peratures and the dis t r ibut ion of  surface tempera-  
tures, it is necessary to first specify the bounda ry  con- 
di t ions on the bulk temperatures.  Two condi t ions  are 
needed to evaluate the cons tants  of  in tegrat ion in (50) 
and (51). F rom the definition of  the dimensionless  
artery bulk temperature ,  0~,b, the first boundary  con- 
di t ion is 

0~,,= 1, z = 0  (65) 

where z = 0 is the shoulder  end of  the arm. The second 
bounda ry  condi t ion is obta ined  from the experimental  
data  of  Bazett et al. [8], who measured  the median 

I I 
T= = 21=C T= = 34.5*C , o  . . . .  . . . . .  . . . . . . . . .  

0 9 ~ . . . . . . . .  = :  = "-:=1 
n R . . . .  OoD, artery / 

e - ; /  / I / ~ - - - - 8 v = , w i n  / 

I 
0 0 5  0 

Z / t  

FIG. 8. Effect of environment temperature on the axial vari- 
ation of the artery and vein bulk temperature and the tissue 
mean temperature for countercurrent heat exchange for 
p~t = 12,.~=, = L = 8, sfi = 3, 17= I,fi, = 1,~'= l,Pe = 3500 

and Bi = 1.48. 

basilic vein tempera ture  at two ambien t  air tem- 
peratures of  21 and 34.5-C. Thus :  

0~h = 0.56, Z / L  = 0.22 at T~ = 21 'C  (66a) 

0~h=0 .15 ,  Z / L = 0 . 2 2  at T,~ = 3 4 . 5  C. (66b) 

These data  are for the arm at rest where the Peclet 
n u m b e r  at the shoulder  is approximate ly  3500 at nor- 
mal ambient  temperatures.  The Blot number ,  which 
accounts  for bo th  convect ion and radiat ion,  is 1.48. 
Based on bounda ry  condi t ions  (65) and (66), the 
results for the axial var ia t ion of  the artery, vein and 
tissue temperatures,  0~,h, 0~h and 0, , ,  are shown in Fig. 
8 for both  ambient  temperatures.  The monoton ic  
var ia t ion of  these temperatures  a long the arm is un- 
realistic due to the simplified model used, which 
neglects three key factors:  cross-sectional area vari- 
a t ion of  the arm,  the axial decrease in the Peclet num- 
ber due to the bleed-off from the axial vessels to the 
muscle and cutaneous  circulat ions and  the  enhance-  
ment  in tissue conduct ivi ty  due to blood perfusion, 
described by the Weinbaum-J i j i  b ioheat  equat ion.  
Blood bleed-off from the artery acts to warm the arm 
towards  the wrist_ These factors can be accounted for 
following the theoretical approach  developed in Song 
el al. [9] and Zhu [10]. 

Peripheral  var ia t ions  of  surface temperature  at  
Z / L  = 0.5 for the artery, vein and arm at T=, = 21 
and 34 .YC are shown in Figs. 9 and 10, respectively. 

20 

R 

5 

B i =  1.0 
. . . . . . . . . . . . . . . . .  ~ . . . . . .  . o ,  =_o. . ;  . . . . . . . .  

0 0 5  I.O 

p~ 

FIG. 7. Ma t r i x  shape factor  fo r  countercurrent  vessels for  
£~ = ,~', and ~ "=- 1. 
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FIG. 9. Peripheral surface temperature variation for the 
artery, vein and arm at cross-section Z/L =0.5, for 
Bi= 1.48, pR = 12,.g~ =£v = 8 , . ~ =  3, 17= 1, ~i,. = l ,k-= 1, 

Pe = 3500 and T, = 21°C. 
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FIG. 10. Peripheral surface temperature variation for the 
artery, vein and arm at cross-section Z/L  = 0.5, for 
B i =  1.48, pR = 12, g, =.f~ = 8,.~ = 3, 17= 1,5, = I , E =  I, 

P e = 3 5 0 0 a n d  T, =34.5:C. 

These plots show that  peripheral  var ia t ion of surface 
temperature  is modera te  for the artery and more pro- 
nounced for the vein and arm, At  bo th  ambien t  tem- 
peratures the arm surface tempera ture  peaks in the 
vicinity of  the ar te ry-vein  pair. This single peak form 
is due to the fact that  the distance between the artery 
and vein is smaller than  their distance from the a lm 
surface and thus they act as a single source_ 

Al though  the artery loses heat  to the tissue and 
vein at bo th  ambient  temperatures,  heat  inter- 
change between tissue and vein is s trongly influenced 
by the ambient  temperature.  Figure 9 shows tha t  
at T~ = 21 C the vein heats the tissue, while at 
T~ = 34.5 'C (Fig. 10), the direct ion of  heat  flow is 
reversed a long the vein circumference. Thus  at  a given 
section along the arm,  heat  can flow from the tissue 
to the vein and from the vein to the tissue a long the 
vein periphery_ 

6.  C O N C L U D I N G  R E M A R K S  

(1) Al though  the cont inui ty  of  the flux bounda ry  
condi t ion  at  the vessel's surface is not  exactly satisfied 
for ~ :# 1, the error  in the new approximate  analytic 
solution derived herein is small for a very wide range 
of  /3 values. In biological appl icat ions  where ,( is 
approximate ly  equal  to unity and  in many engineering 
appl icat ions where ~" <~ I, the error  in the solut ion is 
of  the order  of  1% or less. A l though  this conclusion 
is based on a detailed study of  the single embedded  
vessel case, the error  associated with two or more 
embedded  vessels can be expected to be of  the same 
order  since the multi-vessel solut ion is constructed by 
superposi t ion of  single vessel solutions.  

(2) The approximate  solution presented in Section 
4 for two vessels embedded anywhere  in a cylinder 
can be readily extended to appl icat ions  where the 
number  of  vessels is more than two. Indeed,  this is the 
case in the h u m a n  forearm, where the major  a r t e ry -  
vein pair in the upper  a rm bifurcates at the elbow to 
form two counte rcur ren t  pairs. 

(3) The assumpt ion  of  cons tan t  artery, vein and 
arm cross-sectional areas used to ob ta in  a solution for 

the axial tempera ture  dis t r ibut ion in the simplified 
model for the arm in this paper  can be relaxed. Axial 
var ia t ion of  the three cross-sectional areas can be 
taken into considera t ion using a numerical  in tegrat ion 
of equat ions  (50) and (51) along the length of the arm. 

(4) With  minor  modif icat ion the method of  solution 
can be applied to the case of  two dissimilar fluids. 
Such appl icat ions are c o m m o n  in engineering systems. 
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A P P E N D I X  

The purpose of this Appendix is to show how the 
coefficients a0 and a,. in equation (14) can be analytically 
evaluated. Substituting (14) into boundary condition (6) 
yields 

k a,,np~-'cos ndp+ 
PR C O S ( ~  

p~ +,~.~ - 2pRL cos ,# n =  i , - t  

- ~ ~.a0 + o_E aop~, cos ,,~, + In ~p~ + ~ -- 20.~. cos ~,). 

(AI) 

If (AI) is integrated over q~ from 0 to 2re all the a,, terms 
vanish except ao and one obtains 

E 1 
a o = - ~  ( ~  + ,n  p~) .  (A2) 
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l fone  multiplies equat ion (A I ) by cos m~b and then integrates 
term by term over the interval 0 ~< ~b ~< 2n, one obtains for 
each of  the terms on the right hand side of  (AI)  

f " ao cos m~  d~  = (A3) 0 

and 

f~  8k'ln (,,~ +.~ .~-2p . , .~ , cos (~)cos , , ,~dq ,=  

& ; , f f ~  sin q5 sin mq5 
4m L . p ~ + f j - - 2 p . ¢ ~  cos ~b d~b (A5) 

where the right hand side o f (A5)  is obtained after integration 
by parts. We define the integral 1~ by 

" sin ~b cos mq5 
1, = . p~ +Y,~ -- 2p..~, cos ~b 

d~b (A6) 

and denote  the integral in (A5) by 

= I ~ s in  ~b sin m ~  d~b (A7) 
1, . ] ~ p ~  +.~.~ -- 2p.,~, cos q5 

so that their sum. 

f "  sin ~b (cos m~b+is in  m~b) d ' 
l , + i l . _ =  , p ~ + . ~ , ~ - Z p R Y ~ c o s ~  ~'  (AS) 

can be treated by a contour  integration in the complex plane. 

Introducing the complex variable Q = Re ''~, when 
dO = - i d f ~ / f ~  on the unit circle R = I. the integral (A8) 
can be written as a contour  integration around the unit circle 
in the complex plane : 

1 ( ~ : - -  I)f~'" I 
IL +il, .  = 2pRg, : _~_ dfL (A9) 

f2 "- + o~ + s_; f~ + I 
PR +S, 

Using residue theory, the integral (A9) can be evaluated as 

ni 2, "' 

8 In ( p~. + .~~ - 2p,g, cos 4,) cos m~b dq5 

- 4 m k P R ]  " ( A l l )  

The integral obtained from the second term on the left hand 
side of  (AI)  can be evaluated by a similar procedure.  The 
contour  integration on the unit circle in the .Q plane in this 
case leads to 

f ~ , ~  pw~, cos ~b cos n,q5 dq~ E~ ( g~, "]" 
4 p~ +.~.~ -- 21,a.¢~, cos ~b = 4pa \ P a J  " 

(AI2) 

Combin ing  results (A4). (AI 1). and (AI2),  one obtains the 
following expression for the coefficient a,, : 

- -  - ' - '  . (AI3) 
u,, 4 (n+  Bi)P~ k n ] \ P a }  


