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Abstract—A new approximalte analylic solulion technique is developed for lrealing the heat exchange
between two or more axially interacting vessels which are eccentrically embedded in a cylinder. The cylinder
exchanges heat by convection with the environment and has a non-uniform surface temperature due Lo the
vessel eccentricity. The flow in the vessels can be either countercurrent or unidirectional. The solution is
constructed by superposition of a new solution for a single embedded vessel which exactly satisfies the
boundary conditions when the thermal conductivity of the fluid is equal to thal of the cylinder material
and is a very good approximation when these conductivities are not equal. Comparison with an exact
solution [or a single embedded vessel, when the conductivities are not equal, shows that the approximale
solution results in very minor errors for a wide range of the governing paramelers. As an application of
the new techmque the lwo-vessel solution is used to examine the countercurrent heat exchange in a human
arm.

1. INTRODUCTION

THiS STUDY was motivated by the need to describe
the heat exchange between the thermally significant
countercurrent arteries and veins which occur
throughout the macro- and microvasculature of
humans and animals. This three-way energy exchange
occurs, for example, in the major axial arteries and
veins that supply and drain the human limbs, fingers,
and the rat’s tail. A basic heat transfer model for such
systems is a countercurrent artery—vein pair which
is eccentrically embedded in a cylinder with surface
convection to the environmenl (Fig. 1). The eccen-
tricity is arbitrary since the artery-vein pair may be
close to the center of the tissue cylinder or the surface.

Although the motivation and focus in this study is
the modeling of the biological systems described
above, the analysis is equally applicable to heat trans-
fer in engineering systems such as buried pipes and
solar collectors.

Previous studies [1-7] have analyzed heat transfer
problems for one or two vessels embedded in infinite,
semi-infinite or finite cylindrical media. Various
boundary conditions on the vessels and cylinder sur-
faces were examined. Chato [l] considered two
unequal vessels at uniform surface temperatures
embedded in an infinite medium. Wissler [2] treated
the same configuration with continuity of heat flux
and non-uniform vessel wall temperature and was able
to obtain an exact solution for the case of a linear

thermal gradienl with equal vessel and medium con-
ductivities.

The problem of a single vessel in a semi-infinite
medium was examined by Chato [1] and Bau and
Sadhal [3]. The free surface exchanges heat by con-
vection with the environment in refl. [1] and is iso-
thermal in ref. [3].

Delelice and Bau [4] analyzed a single vessel which
is eccentrically embedded in a cylinder using a con-
formal mapping method. The boundary conditions
on the vessel and cylinder surfaces were of the third
kind, i.e. convective.

Recent interest in modeling countercurrent vessels
in perfused tissue and limbs has motivated studies on
two vessels embedded in a cylinder. Baish et al. [5]
considered two equal vessels symmetrically placed in
a cylinder. Vessel boundary conditions were of the

Fi1G. |. Schematic of countercurrent vessels embedded in
a cylinder.
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¢ specific heat

h heat transfer coefficient

k thermal conductivity

k ratio of fluid to embedding medium
thermal conductivities

Nu Nusselt number of vessel, AR/k,

Pe Peclet number of vessel, 2p.cia, V., /k;

q heat flow rate per unit length of the vessel

r radial coordinate, Fig. 2

R radius of embedding cylinder, Fig. 2

s distance from origin to vessel axis, Fig. 2

sp axis-to-axis distance between vessels,

Fig. 2

T temperature

T, artery bulk temperature at z = 0

T, ambient temperature

x,y  Cartesian coordinates, Fig. 3

14 mean fluid flow velocity

v ratioof V, to V,

ot dimensionless axial coordinate

VA axial coordinate.

Greek symbols
o, f  bicylindrical coordinates, Fig. 3
0 dimensionless temperature

NOMENCLATURE
a vessel radius (a, v) O dimensionless tissue mean temperature
a, coeflicients for single vessel non- A; eigenvalue defined by equation (54)
conformal mapping solution, defined n, & defined by equations (55) and (56)
by equation (13) p dimensionless radial coordinate
A,, B,, C, numerical coefficients [or or density of fluid in vessels
bicylindrical solution in equations (31) Pr dimensionless radius of embedding
and (32) cylinder
b,, ¢, coefficients for counlercurrent o, shape faclor for single vessel case, defined
solutions, defined by equation (45) by equation (19)
Bi Biot number, /1R/k, T shape factor between vessels, defined by

equation (57)
O shape factor between vessel pair and
environment, defined by equation (58)

o] polar angle in cylindrical coordinate
shown in Fig. 2

X constant defined by equations (52) and
(53)

w;; component of eigenvector, defined by
equations (52) and (53).

Superscript
- dimensionless.

Subscripts
a { vessel for single vessel case
artery for countercurrent flow case
b bulk
f fluid in vessels
h homogeneous temperature
m matrix value for vessels and embedding
cylinder
p particular temperature
t tissue
v vein
w wall.

third kind, while the cylinder surface was at a uniform
temperature. A similar problem was solved by Zhu et
al. [6] using unequal vessels at uniform but unequal
surface temperatures.

Since the major axial countercurrent artery-vein
pairs in human limbs are eccentrically located, Zhu et
al. [7] investigated the effect of eccentricity of two
unequal vessels which are asymmetrically embedded
near the center of a cylinder. They imposed a con-
vective condition on the cylinder surface and satisfied
continuity of temperature and heat flux at the vessels’
surfaces. A perturbation solution was obtained which
is limited to small eccentricity of the artery—vein pair.
This is a serious limitation in the biological appli-
cations mentioned earlier since the eccentricity can
be significant, with the major axial countercurrent
artery—vein pairs running much closer to the surface
than the center of the limb, finger or tail.

This paper removes this limitation by constructing

a new approximate solution for a single vessel with
arbitrary eccentricity. This solution is then applied to
two unequal countercurrent vessels arbitrarily embed-
ded in a cylinder which is subjected to the general
boundary conditions treated in Zhu er al. [7]. The
solution is approximate because it exactly satisfies the
continuity of the heat flux condition at the vessel
surface only when the ratio of fluid to the embedding
material conductivity, £, is unity.

A solution to the multiple embedded vessel problem
may be obtained by the superposition of the single
vessel solutions provided the basic solutions for each
vessel satisfy the continuity of temperature and flux
at the surfaces of the other vessels and their super-
position satisfies the surface boundary condition on
the embedding cylinder. Although conformal map-
ping can be used to treat the single vessel case, as in
ref. [4], the form of the solution precludes super-
position. The difficulty is traced to the nature of the
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boundary conditions considered, since solutions to
two or more individual vessels in a cylinder cannot be
transformed to common bicylindrical coordinates. An
alternative approach is developed here in which a new
non-conformal mapping solution for an individual
vessel is constructed in which superposition methods
can be applied.

The effect of not exactly satisfying the continuity of
the heat flux condition at the vessel’s surface when
k # 1 is investigated by first obtaining a new exact
solution for a single vessel in a cylinder with surface
convection, which is valid for any value of £, and
comparing the predictions of this new exact solution
with the approximate solution. The results show that
the discrepancy is remarkably small over a wide
range ol the three governing parameters: the cylinder
Biot number, the eccentricity and the cylinder—vessel
diameter ratio.

2. FORMULATION

Consider two or more flow vessels embedded in a
cylinder with surface convection. The geometry of the
cross-sectional plane and the coordinate system used
in the analysis are illustrated in Fig. 2, in which two
countercurrent vessels are shown. We assume thal the
flow in the vessels is laminar with a parabolic velocity
profile with mean velocities ¥, and V,. The Peclel
number is assumed to be very large and the cylinder
is long. Thus axial conduction and end effects can be
neglected.

The non-dimensional parameters and variables
which are appropriate for both the single embedded
vessel case and the countercurrent flow case illustrated
in Fig. 2 are defined as follows:

_ a, — sp _ Sy
a,=—, sp=—, §=—
a, a, a,
_ s, ! R r,
Sy = — =, R — a =
v a. p a. p au ’ pl au
a a
r. Bi hR 2Pr"rau V:I
= —, | = — =
Py a, k| e k,

FiG. 2. The geometry of the cross-sectional plane and co-
ordinate system.
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_ ¥V, Z T-T,
V=— = -

Vil‘ =aupc’ - TO_TJ .

_ K
k= K’
The subscripts a and v have been used here Lo denote
an artery—vein pair that will be used as a simple model
for the arm later in the paper. The technique, however,
can be applied to any number of parallel vessels with
flow in either direction. Based on the above assump-
tions and definitions the dimensionless energy equa-
tions for the artery and vein are:

1 ¢ an, + 1 620“_“ 2)F‘r()._,
pép P ip p? dp* Pa) 52
for p, <1 (1)
I a( aov>+ 1 &0, P~ oy O
pip\ ép) ptop’ =

for p.<1. (2)

The minus sign in (2) is used to describe counter-
current flow for the biological application. The
heat conduction equation in the surrounding tissue
cylinder is

0;1.\' = 0[ for Pav = | (4)
_00, a0,

Fom = U forp,, = | (5)
CPa v 0P,

;0 Bi

0 _ By torp= p. ©

dp Pr

In order to separate the variables in equations (1) and
(2), we assume that the convection terms 80, ,/¢= can
be approximated by the axial gradient of the bulk
temperatures in the vessels, d0,,,,/dz. Conservation
of the axial energy flux in the vessels leads to the
following expression for the vessel:

2n 1
Ouh.\'h = _J‘ J‘ 0;\,&'(‘ —piv)pu_v dpu.\' dd);l_\- (7)
TJo Jo

Introducing this approximation into equations (1)-
(3). we obtain

de,

V20, = (1—pD) 4= forp, < 1 (8)
_ do

Vi, = —V(1—pd) dj" forp, <1 9)

V0, =0 forp,21.p,21 (10

where the Laplacian operator is used to describe the
conduction terms.
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3. SINGLE VESSEL SOLUTION

In this section, two solutions for the single vessel
case are presented : a non-conformal mapping analylic
solution which is exact only when £ =1 and a bi-
cylindrical solution based on conformal mapping
which is valid for all values of £. The former will be
used in a superposition schemne to construct the solu-
tion for two or more vessels while the latter will be
used to examine the accuracy of the approximate
solution when & # 1. The geometry of the cross-sec-
tional plane and the bicylindrical coordinates [or the
single vessel analysis are illustrated in Fig. 3.

3.1. Non-conformal mapping solution

The governing equations [or the vessel and embed-
ded matenal (tissue) are given in (8) and (10) respec-
tively. The corresponding boundary conditions arc
equations (4)—(6). The temperature solution can be
decomposed into (wo parts § = 0, +0,, where 0, is
the homogeneous solution and 0, is the particular
solution. The particular solutions [or the vessel and
tissuc are:

l 2 l 4 3 d{)uh
Opu—<4l’u—']6!’;._]6>d: p.<!1l (1D
do.
Op = Sk(In p...)d%" o=l (12)

and Lhe homogencous solution lor the tissuc, 0,, takes
the form

do,
O = (a(,+ Y a,p" cos nq‘)) djh. (13)

n=1 =

Before adding the particular solution for the tissue
(12) to the homogeneous solution (13), they must
first be expressed in terms of common coordinates.
Transforming the coordinates p,, ¢, in the particular
solution to p, ¢ and combining the resulting equation
with the tissue homogeneous solution (13), we oblain

a=a, /\

FiG. 3. Radial coordinate and bicylindrical coordinate
system for a single vessel.

Y. L. Wu ¢r al

z do,
0, = <u(,+ Y a,p" cos n¢> d‘-lh

=1

, do,
+ukIn (p*+51—2p5, cos p) =", (14)

The coefficients a, and a, in (14) are determined (rom
boundary condition (6) ; however, their evaluation is
not straightforward. Equation (14) is substituted in
(6) and inlegral expressions for a, are then obtained
from orthogonality. These integrals can be converted
into conlour integrals in the complex plane and then
evaluated using residue theory. This elegant analysis,
which 1s described in the Appendix, leads to the
expressions

k{1
ag = _Z E"'Inpli
/\T <BI -‘_, "
a = T Y
4(n+ Bi)pp \ n Pr

A homogeneous solution to the vessel equation (8) is
also required to satisfy boundary condition (5). A
series solution of the form (13) cannot be used for
k # 1 since there is a singularity in the vessel region
p. < 1. Although an allernative infinite series solution
can be constructed, the determination of the
coefficients in this infinite seres would require a cum-
bersome numerical evaluation. However, one notes
that if £ =1 the solution (13) will satisfy boundary
conditions (4) and (5) and the vessel equation (8)
exactly. When & # 1, the homogeneous solution (13)
satisfies boundary condition (4), but not (5) and the
solution (14) is only approximate, but, nevertheless,
as we shall show shortly, highly accurate for most
conditions of interest. This approximate analytic solu-
tion to the single vessel-tissue problem given by (14),
(15) and (16) can be superposed to construct the solu-
tion to two or more vessels embedded at any location
in a cylinder. The error due to this approximation for
k # 1is examined in detail in Section 5. Our approxi-
mate solution to the vessel temperature is Lhus
obtained by adding (11) and (13)

(15)

(16)

X do.
0, = <u0+ Y a,p" cos nqS) dih

n=1
1, 1, 3\do,
N

Equations (14) and (17) reduce to the exact solutions
for the limiting case s, = 0.

To complete the analysis, the bulk temperature 0.,
shape factor o, and Nusselt number Nu, are needed.
Substituting (17) into (7) and evaluating the double
integrals, we obtain an expression relating 6,, and its
gradient:

(17

3 = \do,
Ouh = <_%+00+ Z ansu) de- (18)
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The shape factor, a,, for heat trans(er between the
vessel and tissue cylinder is defined as:

v,
: 4, _ kd: 9
Ok (Tw—T) - 40, "

where ¢, is the heat transfer per unit length of vessel
which is equal to —py¢malV,(dT,,/dZ). Equations
(18) and (19) yield

(M)
g, = 24 =, a,s, -

The Nusselt number for the vessel is defined as

d0,,
4. 1 ds
71'/\'.-( ’ruh - 7-.|w) B 2 ()uh - Ouw

(20)

Nu, =

(21)

where (), 1s the dimensionless mean wall temperature
of the vessel which is defined as

O = - j 0.1.6)dp, at p,=1. (22)
2n 0

Substituting (17) into (22) and introducing the result-
ing expression for 0,, into (21) we oblain

Nu, = 48/11. (23)

This result for the vessel Nusselt number 1s identical
Lo that for a fully developed temperature distribution
in a tube with constant surface heat flux. Examination
of the vessel solution shows that the homogeneous
part plays no role in the determination of the Nusselt
number.

3.2. Conformal bicircular mapping solution for a single
vessel for k+#1

The single vessel solution presented above does not
satisfy boundary condition (5) exactly when k£ # 1.
To examine the accuracy of this approximate solution
an exact solution, valid for all values of &, is developed
in this section.

We introduce the bicylindrical transformation

+i
x—iy = —sinh a, tanh (a 2’ﬁ>

O<a<oo, —n<fi<n (24)

where the coordinates a, f§ are shown in Fig. 3. Con-
stant a-coordinates are circles described by
sinh? a,

x+sinh tho)>+y? = ——
(x+sinha, cotha)-+y Sinha

(25)

with o, representing the vessel and a, the cylinder.
Geometric relationships require that

a, sinha,

R~ sinha,

(26)

and
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5, = sinh o, (coth &, —coth «,). 27N

The governing equations for the vessel and tissue in

the new coordinates are the same as (8) and (10) with

the Laplacian terms expressed in terms ol 2 and f.
The boundary conditions transform to

a0, .
(cosh 12+Cosﬁ)ﬁ_a =sinha, Bil, fora =a, (28)
0. f) = 0.(x. ) fora=a, (29)
and
cl, a0,
(= — foroa = x«,. (30)
do Qo
The solution to the vessel equation (8) is
d do,
0, = ("0"’ Z ¢, e " cos "ﬁ) d"t'
n=1 -
L, b, 3\do, 31
3% 18P " 16/ d- 31
and the solution to the tissue equation (10) 1s
0, = I: Z (A, sinh na
n=10
d()uh
+ B, cosh na) cos nfi+ Ay e 32)

The coefficients A4,, B,, C, are evalualed using
boundary conditions (28)-(30). Boundary condition
(28) yields a set of linear algebraic equations:

Ay(cosh o, —a- Bisinha,)+ (A4, cosh a,

+ B, sinha,)— By Bisinhay, =0 (33)
Ao+ A, (cosh? «, — Bi sinh?® a,) + A, cosh 2a,
+ B, (cosh a, sinh o, — Bi sinh &, cosh a,)
+ B, sinh 20, =0 (34)
and
. n—1
A, . (cosh o, —tanh na, sinh o)
+ A, (n cosh o, — Bi sinh a, tanh na,)
. n+1
+ A, (cosh o, +tanh na, sinh a,) -
. n—1
+ B, _(tanh na, cosh a, —sinh a,) 5=
+ B, (n cosh a, tanh not, — Bi sinh o)
. n+1
+ B, (tanh ra, cosh a, +sinh az)T =0
forn>= 2. (35)

Boundary condition equation (29) requires that
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co = Ao, + B, (36)
and
¢, = e (A, sinhny, + B, coshnz,}) fornz= |
(37

Applying boundary condition equation (30). using
orthogonalily and evaluating the resulting integrals
using residue theory, we obtain

Ay = —ik (38)
and
1 A
Cy 2”(—1)'r _A e" (A, cosh nz,
+B,sinhnx,) fornzl. (39)

Equations (33)-(39) contain 3N+3 unknowns.
whereas the number ol equalions 1s 3N+ 2. This set
of equations is, therefore. not closed. Forlunaltely.
C, exp (—nx,) decreases as n is increased and thus
it can be truncated at N terms. I we require that
Cyirexp(—(N+1)x,) =0, then the above equa-
lions can be truncated and solved in closed [orm.
Computations for Cy,, exp (—(N+1)z,) show that
it decreases very rapidly. The criterion used Lo choose
N 1n Lhe sequence is

Bi\+4 B\
N+ 4
Br

A '
A;\+J_A’,\

Ned o
A/

C;\w i C;\'

C.\'}J 10 ;
7

N

|7
for0<j<10. (40)

Using (19) as the definition lor the shape [aclor, one
oblains [rom (31)

-1
g, = <5—4 —4”20 (—1)"C,e ‘”"> . (41)
Result (41) is derived [rom a conlour integralion in
the complex plane and residue theory. The Nusselt
number [or the vessel is again a conslant equal to
48/11. This 1s the same as the value obtained from the
approximate solution. This is not surprising since the
homogeneous solution does not contribule to the
Nusselt number.

4. TWO-VESSEL SOLUTION:
COUNTERCURRENT HEAT EXCHANGE

As an example of the superposition solution for
multiple vessels, consider Lhe problem of (wo embed-
ded vessels with counterflow heat exchange. The solu-
tion to this problem is obtained by superposition of
two single vessel solutions presented in Section 3.1.
The governing equations and boundary conditions
are given by equations (4)—(6) and (8)—(10). The tem-
peralure solution is decomposed into two parts
0 = 0,+0,, where 0, and 0, arc the homogeneous
and particular solutions, respectively. The particular
solutions for the arlery, vein and tissue are:

Y. L. Wu ¢r dl.

I do,,
O = | Finp )

o1 . 1, 3\do,
—va| pi- - 3
Va <4 P e T 6) (43)

d-
1 _ do,,
0y = (41\ In p“) i

do
< £ln p, ) d‘h

The homogeneous solution in the three regions that
replaces (13), (15) and (16) is

(44)

do,
= <bl)+ Z th” cos ”(¢ d)n)) d- -
=\ -

d __,do,
+ <c'(,+ Y c.p" cos n(}S) Va: d'h (45)
n=1 -
where
k(1
by = — 4 Bl +In p, (46)
/\- B -', "
.
4(n+ Bi)pg \ n Or
k(1 Pr
Cy = i <B, +ln u\‘> (48)
and
o k Bi | 5y 49)
o= 4(n+Bipi \ n o/ (

The temperature solutions in the artery and vein
are used Lo determine the relationships [or the bulk
lemperatures as defined by cquation (7). The evalua-
tion procedure of these double integrals is the same
as that used in the single vessel case. Thus, the bulk
temperature relationships for the interacting vessels
that replace (18) for a single vessel are

dl)lh
0w ={ ¥ b5 g )50
’ <MZU > d-

J) o _.do,
+ Zn("s“_T Va; i (50)
" kinsp\da,,
(,T bis: 4 > d:z
1\ __,d0
(Zc,.'" ——) a—=". (51
n=1=0 -
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The coupled equations (50) and (51) can be solved
analytically if a,. V., §,. 5, and 5p are conslant:

O = 2@y XP (£,2) + Y25 exp (£:2) (52)
0, = %11y eXp (4, 2)+ Y2012 eXp (£22)  (53)

where eigenvalues /4, , are given by

Lpa = P (54)
9
where
P ., N
orit( £ nn)( 5 el
n=10 n=10
__ [ 2 /\ln?p
—Va; b, Sl 4 —
“ <HZ:(I s 4 )
kln <¥p>
. a,
A

n=10

and
<< Z b, 51— — ) Va? ( Z 5+
n—1 n=10

o, are the cigenvector coefficients in equations (50)
and (51) and y, and y, are integral constants which
are determined by the bulk temperature at a reference
position. For three or more vessels, relationships for
Ow. i=1,2,3,.... N, analogous to (50) and (51)
would be oblained.

)

(56)

5. RESULTS AND DISCUSSION

5.1. Accuracy of the approximate solution:
embedded vessel

Since boundary condition (5) is satisfied exaclly
only when the thermal conductivity ratio £ is equal lo
unily, the solutions (14) and (17) are approximale for
all other values of £. In this seclion we evaluate the
error associated with this approximation by con-
sidering the single embedded vessel case for which an
exacl solution has been oblained in Section 3.2 using
conformal mapping. In particular, the shape factor a,
is examined by evaluating the ratio of our approxi-
male solution for o,, equation (20), with our exact
solution for a,, equation (41). Comparisons are made
for a wide range of the four governing parameters:
the conductivity ralio &, Biot number Bi, eccentricity
§, and the cylinder—vesse! radius ratio pg. The effect
ol conductivity ratio and Biot number on the accuracy
of the shape factor for a configuration with large
eccentricity defined by pp = 5 and §, = 3.5 is shown
in Fig. 4. Three Biot numbers are considered:

single
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gL
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7
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Ratio of thermal conductivies, X =k Ik

FiG. 4. Effect of conduclivity ralio £ on the accuracy of the

single vessel shape [actor. Comparison belween approximate

and exacl (conformal mapping) results for pg =5 and
i, =35

Bi=0.1, 1.0. and 10. Values of Bi typical of the
human upper limbs are 1.5 in air and 10 in waler. The
conduclivily ratio is varied [rom 0 to 10. Since the
approximate solulion is exact for k = 1. all curves
inlersect al a point corresponding Lo a shape lactor
ratio. (0,)upprovimate/ () enaat» OF unily. For Biot num-
bers of 0.1 and 1.0, the error in the shape [actor is
insignificant and al Bi = 10 and £ = 10 the error is
less than 3%. For blood vessels in tissue | <k <2
and in engineering applications & ranges [rom
6x10 * (air—copper) lo 12 (water-85% magnesia
insulation). Figure 4 also shows that for £ < 1 the
error in shape factor is less than 1%. This latter range
of £ includes fluids such as air, water and oil flowing
through cylinders of materials such as glass, wood,
metal, etc., which are common engineering appli-
cations.

The effect of eccentricily and Biot number on the
accuracy of shape factor for £ =10 and p, =5 is
shown in Fig. 5. For the limiting case of concentric
cylinders, i.e. §, = 0, the exact result for the shape
factor ratio of unily is obtained for all Biot numbers
regardless of the value of £, since equations (14) and
(17) reduce to the exact solutions. As the eccentricity is
increased the error increases monotonically, reaching
7% at 5, = 3.99 for Bi = 10 bul remaining small (less
than 1%) for Bi = 0.1 and 1.0. It should be noted that

[e]]

o o -
g 8 8
T
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]
&
I

095—

Ratio of shape factors
{ay) aperas mate /o)

o
2
!

| | |
(o] 1 2 3 q

Eccentricity, 5,
F1G. 5. Effect of eccentricity §, on the accuracy ol the single
vessel shape factor. Comparison between approximate and
exacl (conformal mapping) results for py = 5 and £ = 10.
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Fi1G. 6. Effect of cylinder size pg on the accuracy of the single
vessel shape [actor. Comparison between approximate and
exacl (conformal mapping) results for §, = 3.5and k =

the maximum eccentricily for pg = 5 is 4.0, which
corresponds to a vessel which is at a tangent lo a
cylinder. The effect of Lthe cylinder-vessel diameler
ratio py on the shape factor ratio for £ = 10 and
5, = 3.51s shown in Fig. 6. Here the error in the shape
factor increases as Lhe cylinder radius pg 1s decreased.
Since §, is conslant, a decrease in py has the effect of
increasing the eccentricity. The minimum value of
pr representing the langent configuration is oblained
when p, =4.5. On the other hand, at large p,
(pr = 12), the limiting case of concentric cylinders is
approached and an exacl value for the shape [aclor is
obtained for all values of Biand k.

The results shown in Figs. 4-6 indicate that even
though boundary condition (5) is not satisfied exactly
when & # 1, the error associaled with Lhis approxi-
mation is minar, especially [or Bi or k less than unity.
In particular, in biological applications where the
value of £ is approximately equal to unily. the error
1s indeed insignificant.

5.2. Two embedded vessels

The two-vessel solution is used to examine the Nus-
selt number, the artery—vein and matrix shape factors,
the axial vessel bulk temperature distribution, the
axial mean cylinder temperature distribution, and the
surface temperature distribution of the artery, vein
and cylinder.

Following the same procedure as for a single vessel,
the Nusselt number [or both artery and vein is found
to be 48/11.

The two-vessel solution is used to oblain two heat
transfer shape factors, o,, and o,,, which describe,
respectively, the heal transfer rate between the two
vessels, and thal between the vessel-tissue matrix and
the environment. These [actors are defined as

4a— 4y

o = k(T —To) 7
and
— q‘h‘ +qv
O = e (To—T2) (58)

where T, is the mean matrix temperature (artery, vein
and cylinder) given by
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-T, | e 27
=0, = —J J; 0(p.d)pdpde  (59)

PR Jo

and k,, 1s the matrix conductivity given by

] 1+a;
km =" +a < —;-'3£>kl'
Pa Pr

Substituting the solutions lor the bulk temperature of
the artery and vein, (50) and (51), into the definition
of o,,. we obtain

do,  _ .do,
“'A<d- & d->

= \_" 7? £ do,.,

E (sp\ 117 ._.d0,
G W Y i Bty § 7
+[”‘;oc,.(5.. ) 4]"<a‘,> 96] a -y

For the general case, g,, depends on the local axial
gradients of the vessel bulk temperatures. However,
for the special case of two equal radii vessels embed-
ded at equi-distance [rom the center ol a cylinder, 1.e.

=l and §, = §,, (61) simplifies to

(60)

(61)

0. = T (62)
o7 +klInsp
This result shows that the shape factor o,, for this
special case depends only on the distance between the
two vessels sp and is independent of eccentricity. 1t 1s
interesting to note that if the radius of the embedding
medium cylinder is infinite, then §, is equal to §,.
Setting §, = §, and assuming equal flow rates in the
two vessels, i.e. Va? = 1, equation (61) reduces to
Wissler’s [2] results for two vessels embedded in an
infinite medium. Result (62), withoul the In 5p term.,
was also obtained to leading order in the perturbation
of Zhu et al. [7) for small eccentricity. Expression (62)
is especially useful in biological applications involving
extremities such as a finger or tail where the artery—
vein pair is symmetrically located relative to the skin
surface.
Using the temperature solutions for the artery, vein
and tissue to determine 7, from (59) and substituling
the result into the definition of ¢,,,, we obtain

On =
4(d0uh V 3d0vh plzl
(I +aDk+(pr—1-al)

SR
L




Heat exchange between two or more intleracting vessels

Since the vessel area is small compared with the
embedding medium area, the lerm (1/pg)? in (63) is
negligible. For §, = §, and k£ ~ 1 (63) simplifies to

4

Onw = 7 (7 ,. s
Bi+2 (Y
Bi Pr

The dependence of the shape factor ¢, on §,/pg for
various Biol numbers (0.1, 1.0, 10) is shown in Fig.
7. For Bi < 1, the matrix shape factor is essentially
constant independent of the vessels’ location in the
cylinder. However, at Bi = 10, o,, increases sharply
as the vessels move closer to the cylinder surface.
When the eccentricily is small, §,/ps « 1, expression
(64) reduces to the perturbation solution of Zhu er al.
[7]. in which the (5,/px)* term does not appear.

Finally, the two-vessel solution is applied to the
human arm to determine the artery-vein and matrix
shape factors and the bulk and surface temperature
distribution of the artery, vein and arm. The con-
figuration examined models the arm as a constant
radius pg = 12. The artery and vein are assumed to
be symmetrically embedded in the tissue cylinder at
5, =5, = 8 with 5p = 3 and 4, = 1. The conductivity
ratio £ is equal to unily and thus boundary condition
(5) is satisfied exactly. Using (62) the artery—vein
shape faclor a,, 1s found to be 1.28.

From (64), the corresponding matrix shape factors

(64)

o, at Biot numbers of 0.1, 1 and 10 for this model of

the arm are 0.195, 1.565 and 5.294, respectively.

To determine the axial vaniation of bulk tem-
peratures and the distribution of surface tempera-
tures, it is necessary to first specify the boundary con-
ditions on the bulk lemperatures. Two conditions are
needed to evaluate the constants of integration in (50)
and (51). From the definition of the dimensionless
artery bulk lemperature, 0., the first boundary con-
dition is

Ouh:l‘ o=

(65)

where - = 01s the shoulder end of the arm. The second
boundary condition is oblained from the experimental
data of Bazett es al. [8], who measured the median

Shape factor, om
o @

o

FIG. 7. Matrix shape factor for countercurrent vessels for
§,=4fand k= 1.

1081

| Of— = == mim.
o9
oe
o7

ot

o2
o1f T TTTTTTTTS

rature

Fi1G. 8. Effect ol environment temperalure on the axial vari-
ation of the artery and vein bulk temperature and the tissue
mean lemperalure for countercurrent heat exchange for
prn=125 =5 =83p=3V=1,a =1k=1,Pe=13500
and Bi = 1.48,
basilic vein temperature at two ambient air lem-

peratures of 21 and 34.5-C. Thus:
0,=056, Z/L=022 at T, =2I'C (66a)
0., =0.15, (66b)

These data are for the arm at rest where the Peclet
number at the shoulder is approximately 3500 at nor-
mal ambient temperatures. The Biot number, which
accounts for both convection and radiation, 1s 1.48.
Based on boundary conditions (65) and (66), the
results for the axial variation of the artery, vein and
tissue temperatures, 0,,, 8., and 0,,,, are shown in Fig.
8 for both ambient temperatures. The monotonic
variation of these temperatures along the arm is un-
realistic due to the simpliied model used, which
neglects three key factors: cross-sectional area vari-
ation of the arm, the axial decrease in the Peclet num-
ber due to the bleed-off from the axial vessels to the
muscle and cutaneous circulations and the enhance-
ment in tissue conductivity due to blood perfusion,
described by the Weinbaum-Jiji bioheat equalion.
Blood bleed-off from the arlery acts to warm the arm
towards the wrist. These factors can be accounted for
following the theoretical approach developed in Song
et al. [9] and Zhu [10].

Peripheral variations of surface temperature al
Z/L = 0.5 for the artery, vein and arm at 7, =21
and 34.5°C are shown in Figs. 9 and 10, respeclively.

Z/IL=022 at T, =345C.
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o4l
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0.2
[s Il —
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Peripheral temperature, 8=

To = 21°C
% 5 = .
Angle, ¢, ,¢,,9
Fi1G. 9. Peripheral surface temperature variation for the
artery. vein and arm at cross-section Z/L =05, for
Bi=148,pa =125, =5, =83p=3,V=1l4,=1k=1,
Pe = 3500 and T, =21°C.




Peripheral temperoture, 8

Angle, ¢,, ¢, ¢

FiG. 10. Peripheral surface temperature varialion for the

artery. vein and arm al cross-section Z/L =0.5. [or

Bi=148,pa=12,§5,=5.=8,5p=3,V=1,a=1k=1,
Pe =13500and T, = 34.5°C.

These plots show that peripheral variation of surface
temperalure is moderate [or the artery and more pro-
nounced for the vein and arm. At both ambient tem-
peratures the arm surface temperature peaks in the
vicinity of the artery—vein pair. This single peak form
is due to the facl that the distance between the artery
and vein is smaller than their distance from the arm
surface and thus they acl as a single source.

Although the artery loses heat to the tissue and
vein at both ambient temperatures, heat inter-
change between tissue and vein is strongly influenced
by the ambient temperature. Figure 9 shows that
at T, =21'C the vein heats the tissue, while at
T, = 34.5'C (Fig. 10), the direction of heat flow 1s
reversed along the vein circumference. Thus al a given
section along the arm, heat can flow from the tissue
to the vein and from the vein to the tissue along the
vein periphery.

6. CONCLUDING REMARKS

(1) Although the continuity of the flux boundary
condition at the vessel’s surface is not exactly satisfied
for k # 1, the error in the new approximate analytic
solution derived herein is small [or a very wide range
of & values. In biological applications where & is
approximately equal to unity and in many engineering
applications where £ < 1, the error in the solution is
of the order of 1% or less. Although this conclusion
is based on a detailed study of the single embedded
vessel case, the error associated with two or more
embedded vessels can be expected to be of the same
order since the multi-vessel solution is constructed by
superposition of single vessel solutions.

(2) The approximate solution presented in Section
4 for two vessels embedded anywhere in a cylinder
can be readily extended to applicalions where the
number of vessels is more than two. Indeed, this is the
case in the human forearm, where the major artery—
vein pair in the upper arm bifurcates at the elbow to
form two countercurrent pairs.

(3) The assumption of constant artery, vein and
arm cross-sectional areas used to obtain a solution for

Y. L. WU er al.

the axial temperature distribution in the simplified
model for the arm in this paper can be relaxed. Axial
variation of the three cross-sectional areas can be
laken into consideration using a numerical integration
olequations (50) and (51) along the length of the arm.

(4) Wilh minor modification the method ol solution
can be applied to the case of two dissimilar fluids.
Such applications are common in engineering systems.
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APPENDIX

The purpose of this Appendix is to show how the
coefficients ¢, and g, in equation (14) can be analytically
evaluated. Substituting (14) into boundary condition (6)
yields

i 13 pr—35,COS P
anpy 'cosng+ - s—
L anp ey - 2pf, cos ¢

n=1

Bi x k .
- #T'(au_'_ Y. a,ph cos ng+ 3 In (pr + 5§ —2pgs, cos ¢)>_
R n=1

(AD)

If (Al) 1s integrated over ¢ from 0 to 2=z all the a, terms
vanish except g, and one obtains

__F(1
G =—7 E_+npa.

(A2)
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If one muluiplies equation (A l) by cos m¢ and then integrates
lerm by term over the interval 0 < ¢ < 2z, onc oblains lor
each of the terms on the right hand side of (Al)

J agcosmpdp =0 (A3)

J ( a,npR COS n¢> cos m¢ d¢p = ma,prn  (A4)
n n=1

and

kL
J gln (pr+5, —2p,5, cos p) cosmp d¢p =

B @ J" sin ¢ sin me b (AS)

dm | . pi +35]—2pgs, cos ¢

where the right hand side of (A5) is obtained afler integration
by parts. We define the integral /, by

/ " sin ¢ cos m¢
b 'nplzl+-\7u2_2pkf.n cos ¢
and denote Lhe integral in (A5) by

dé (A6)

/ " sin ¢ sin m¢
P )apR 48— 2p0sf, cos ¢
so Lhat their sum,

" sin ¢ (cos mp+isin m
Ih+il, = ¢ — ¢ — ¢)
—n PRHS —2pg¥, cos ¢

d¢ (A7)

dé.  (AB)

can be treated by a contour integration in the complex plane.
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Introducing the complex variable Q = Re*, when
d¢ = —idQ/Q on the unil circle R = I, the integral (A8)
can be wrillen as a contour integration around the unit circle
in the complex plane:

) 1 (QI . I)Qm— |
L+il,= — ———————dQ.
205, Q'+ PRt

= Q4+
PR35,

(A9)

Using residue theory. the integral (A9) can be evalualed as
mi (5"

mﬂ(ﬂ)
kL .

J. 3 In (pr+5; —2p,3, cos ¢) cos mep d¢

8
_ kn Y All
= T am\oe) ( )

The integral obtained [rom the second term on the left hand
side of (A1) can be evaluated by a similar procedure. The
contour integralion on the unit circle in the Q plane in this
case leads to

- ‘7—%:1\.(305-4777(:05 mpd¢ = Rl ) .
<24 PR+ —2paS, cos ¢ dpn \pr

(Al12)

Combining results (Ad). (All), and (A[2). one obtains the
following expression [or the coeflicient a,, :

£ Bi iy
a,=————"—\|—— I - .
4(n+ Bi)pr \ n PR

I+il, =

(A10)

(Al3)



